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Abstract
We investigate the stress–strain relationship and elastic stability of zinc-blende
GaP, GaN, InP and BN lattices under hydrostatic pressure by first-principles
calculation. A simple and direct ab initio implementation for studying the
mechanical properties of cubic crystals is developed. The four phases’ full-set
stress–strain coefficients in wide pressure ranges are theoretically calculated.
The fundamental mechanism of elastic stability and the origin of phase
transformation under hydrostatic pressure are explored. We found that the
abilities for most of these lattices are enhanced to sustain axial strain but weaken
to shear strain under higher pressure. The conditions of lattice stability are
analysed using both the thermodynamic work–energy criterion and the elastic-
stiffness criteria. We show that the lattice collapse of the perfect crystals is
caused by the disappearance of their bulk moduli under volume dilation. Lattice
defects are considered to be the main reason causing phase transformation under
pressure. The correlation between the phonon softening and the variation of
elastic coefficients is studied. The pressure dependence of the Kleinman internal
strain parameter and its relationship to elastic stability is also explored.

1. Introduction

Mechanical or elastic stability is an important issue for understanding the elastic behaviour and
phase transformation of solids [1–4]. In 1940 Born presented the first systematic investigation
of lattice stability and put forward a stability criterion by requiring convexity for an expansion
of the internal energy of a crystal in a power series in the strain [1]. Later, Hill et al showed
that the stability is relevant to the actual realization for applying strain [2, 5]. From a path-
dependent Gibbs integral analysis Wang et al [3, 6] suggested the stiffness-coefficient criteria.
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Morris et al [4] considered the Helmholtz free energy change under strain and obtained similar
criteria as Wang et al. Theoretical studies of lattice stabilities have been carried out for Si [7–9],
SiC [7, 8, 10, 11], Au [3, 6] and Ni3Al [12] by classical molecular dynamics simulation.
Stability criteria have also been extensively used in theoretical estimates of the ideal strength
of various materials [13–20] through first-principles calculation. However, the microscopic
mechanism of lattice stability continues to be an outstanding issue.

We have recently reported some theoretical investigations of the mechanical,
dielectric and elastic properties of groups III–V and IV semiconductors by first-principles
calculations [21–25]. In this work we studied the problem of the stress–strain relationship
and elastic stability of four typical III–V semiconductors in zinc-blende (ZB) structure under
hydrostatic pressure by first-principles plane-wave pseudopotential calculation. Most of
the semiconductors have their stable geometrical configuration as ZB symmetry in ambient
environment. Phase transformation from ZB to more ionic octet phases, such as the NaCl
structure and the CsCl structure, usually occurs for semiconductors when their original
structures lose stability under pressure [26–28]. The aim of the present study is to explore the
influence of hydrostatic pressure on elastic instability and the origin of the phase transformation
in ZB crystals.

The paper is organized as follows. In section 2, the details of first-principles calculations
of strain, stress and elastic parameters are described. Our theoretical results and analyses on
the relationship between elastic stability and pressure are given in section 3. In section 4,
we discuss the connection between elastic stability and phase transformation. Finally, the
summary and conclusions of the present work are given in section 5.

2. Details of first-principles calculation

Our study is based on the plane-wave pseudopotential method using the ABINIT computer
code [29] with the Hartwigsen–Goedecker–Hutter (HGH) relativistic separable dual-space
Gaussian pseudopotentials [30] in the local-density approximation. The effect of hydrostatic
pressure is simulated by a symmetrical volume reduction of the lattice cell V =
(a/a0)

3V0 [21, 31]. a and a0 respectively are the equilibrium lattice constants at pressure
P and P = 0. Some key points of the present technical implementation are given below.

2.1. Strain modes

Strain is applied by exerting a small deformation of the lattice. The strain vector e relates to
the strain tensor ε by

ε =
( e1 e6/2 e5/2

e6/2 e2 e4/2
e5/2 e4/2 e3

)
. (1)

The strain causes a change in the primitive vectors of the lattice cell by( a′
1

a′
2

a′
3

)
=

( a1

a2

a3

)
· (I + ε). (2)

The following four modes [23, 24] of applying strain on the lattice are used in the present
study.

Mode 1: Bi-axial strain at [100] and [010] directions e = (δ, δ, 0, 0, 0, 0),
Mode 2: Pure [111] shear strain e = (0, 0, 0, δ, δ, δ).
Mode 3: Volume-conserving tetragonal strain e = (δ,−δ, δ2/(1 − δ2), 0, 0, 0),
Mode 4: Isotropic volume dilatation e = (δ, δ, δ, 0, 0, 0),
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2.2. Stress calculation

The technique of ab initio calculation of stress had been developed by Nielsen and
Martin [32, 33]. The stress tensor σi j (i, j = 1 . . . 3) is defined as the derivative of the
total energy with respect to the strain tensor εi j (i, j = 1 . . . 3) of the system,

σi j = �−1 ∂ Etot

∂εi j
, (3)

where � is the volume of the unit cell. The total energy Etot per unit cell in the local-density
approximation is calculated by

Etot =
∑
k,G,i

|�i(k + G)|2 h̄2

2m
(k + G)2 +

1

2
4πe2

∑′
G

|ρ(G)|
G2

+
∑

G

εxc(G)ρ∗(G) +
∑
G,τ

Sτ (G)V L
τ (G)ρ∗(G)

+
∑

k,G,G′ ,i,l,τ
Sτ (G − G′)
V NL

l,τ (k + G, k + G′)�i(k + G)�∗
i (k + G)

+

(∑
τ

ατ

) (
�−1

∑
τ

Zτ

)
+ �−1γEwarld. (4)

where � is the wavefunction, k and G the reciprocal-lattice vectors, ρ the charge density, and
Sτ (G) is the structure factor. V L and 
V NL are respectively the local and nonlocal corrections
of the potential. Zr is the ionic charge; γEwald is the Madelung energy of ions of the crystal.
The isotropic pressure is given by P = −σii (i = 1, 2, 3) for the hydrostatic environment.

2.3. Stress–strain coefficients under pressure

Let εi j be the symmetric Lagrangian strain between the two configurations from X to x, then
the stress–strain relation is defined by

σi j (x) = σi j (X) +
∑

kl

Bi jklεkl + · · · (5)

where Bi jkl (i, j, k, l = 1 . . . 3) are the stress–strain coefficients or elastic-stiffness
coefficients [34]. The terms + · · · are for the higher order of the strains. Due to the symmetric
property in their two pairs of Cartesian indices, they can be expressed in Voigt notation as a
6 × 6 matrix Bαβ (α, β = 1 . . . 6). This matrix is not symmetric in general, i.e. Bαβ �= Bβα.
However, the matrix is simplified to a symmetric form for the cubic crystal. The number of
non-zero elements of stress–strain coefficients is reduced to three, namely B11, B12 and B44,
in the cubic system. Besides, two more elastic-stiffness coefficients, B ′ and Bb, are defined in
the present study. Bb is the bulk modulus at P . B ′ measures the lattice’s resistance to in-plane
shear. The relationships of these two coefficients to B11 and B12 are given by

Bb = B11 + 2B12

3

B ′ = B11 − B12

2
.

(6)

According to equation (5), the stress–strain coefficients B11 and B12 for a cubic crystal
under hydrostatic pressure are calculated by applying a small mode 1 strain, which gives

B11 = σ11(x) − P(X)

δ
− B12,

B12 = σ33(x) − P(X)

2δ

(7)
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Figure 1. Illustration of the calculation of elastic stiffness coefficient B12 for the GaP phase. The
elastic stiffness coefficient is a linear function of strain parameter δ. B12 is obtained by linear fitting
of the first-principles B12 (δ) data and taking the value at δ = 0 of the fitted equation.

where P(X) is the hydrostatic pressure at X, P(X) = σii (X) (i i = 11, 22, 33). The pressure
causes a cell volume change from V0 to V . These pressure data are taken as the environmental
hydrostatic pressure and keep constant throughout the subsequent strain calculation from X to
x. B44 is calculated by applying the mode 2 strain

B44 = σi j (x)

δ
, (8)

where σi j (x) (i �= j) are the off-diagonal elements. All of these elements have the same value
under this strain mode. B ′ can be calculated by applying mode 3 strain

B ′ = (1 + δ)2(σ11(x) − σ33(x))

2δ(3 + 3δ + δ2)
. (9)

The mode 4 strain is used to calculate the bulk stiffness coefficient Bb:

Bb = σii (x)

δ
. (10)

The theoretical elastic-stiffness coefficients vary slightly with strain parameter δ in the
calculation. To eliminate this problem, we calculate 20 sets of data by varying δ from −0.01
to 0.01 at intervals of 0.001 (without δ = 0.00). A linear relationship exists in these data. Our
final stiffness coefficients are obtained by a linear fitting of the 20 sets of first-principles data
and taking the value at δ = 0 from the fitted equation. The coefficients calculated in this way
are exactly the elastic-stiffness coefficients at pressure P . Figure 1 shows an example for the
calculation of the B12 coefficient of GaP at P = 0.39 Mbar.

3. Results and analysis

3.1. Analysis of the first-principles pressure–volume relation

The pressure–volume relationship is the basis of the equation of state (EOS) of a material.
It is necessary to examine the reliability of the pressure and stress data from first-principles
calculation by direct comparison with relevant experimental results at the beginning of the
present study. The experimental data of bulk modulus B0 and its pressure derivative B ′

0 at
P = 0 for ZB GaP [35] are 0.911 Mbar and 4.5, respectively. Figure 2 shows our comparison
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Figure 2. Comparison between the experimental and theoretical P–V/V0 curves of GaP. The Pab

curve is from first-principles calculation based on the ab initio stress theory. PM, PBM and PV are
respectively calculated by Murnaghan, Birch–Murnaghan and the universal Vinet EOSs using the
parameters from experiment.

between the experimental and theoretical P–V/V0 curves, where Pab is the curve from our first-
principles stress calculation, PM, PBM and PV are respectively calculated by the Murnaghan
EOS [22]

PM = B0

B ′
0

[(
V0

V

)B ′
0

− 1

]
, (11)

the third-order Birch–Murnaghan equation [36]

PBM =
(

3

2

)
B0

[(
V0

V

) 7
3

−
(

V0

V

) 5
3

] {
1 −

(
3

4

)
(4 − B ′

0)

[(
V0

V

) 2
3

− 1

]}
, (12)

and the universal EOS of Vinet et al [37]

PV = 3B0

(
1 −

(
V
V0

) 1
3

)
(

V
V0

) 2
3

e
(

3
2

)
(B ′

0−1)

(
1−

(
V
V0

) 1
3
)
, (13)

using the experimental B0 and B ′
0 data. The Birch-Murnaghan EOS is the high order

approximation of the Murnaghan EOS. The Vinet EOS is considered to be able to accurately
estimate the volume change of most solids under very high compression. It is seen that the Pab

curve is quite close to the empirical PV and PBM curves for large volume variation. Therefore,
the reliability of our first-principles pressure and stress data is established.

3.2. Elastic stability under pressure

It is common knowledge that a perfect crystal becomes structurally unstable when the lattice
can no longer withstand the applied external stress. Plastic deformation with the emergence of
lattice defects or phase transformation will occur at this point. However, due to the existence
of various lattice defects in real materials, the structure change may start well before this
theoretical critical point. According to the theory of continuum mechanics, the thermodynamic
stability condition for any mechanical system is given by the following equation [4–6]:


F � 
W. (14)
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This equation indicates that as a system is subject to a small transformation from state A
to state B, it can maintain stability only when the increment of Helmholtz free energy 
F of
the system equals or exceeds the mechanical work 
W done by the external force. For the
present first-principles study at absolute zero temperature, the stability condition is simplified
to


Etot � 
W. (15)


Etot is the change of total ab initio energy. The general form of 
W is given by


W =
∫

V

(
εi jσi j −

∫ σi j

0
εi j dσi j

)
dV . (16)

For the system under isotropic hydrostatic pressure, the work 
W done by constant isotropic
pressure P for a small cell volume variation 
V is simplified as


W = −P
V . (17)

The calculation of 
W is independent of the way the volume changes for the constant
hydrostatic pressure condition. Then, the elastic stability condition becomes


Etot + P
V � 0 (18)

where the internal energy change 
Etot, caused by a small strain ε under the isotropic pressure
P , is directly available from first-principles calculation. The cell-volume change 
V is
calculated by 
V = a′

1 · (a′
2 ×a′

3)− a1 · (a2 ×a3). Therefore, the condition of elastic stability
of equation (18) can be conveniently examined in the present first-principles calculation. This
is the work–energy criterion for elastic stability analysis.

Figure 3 shows our results for the relationship between 
Etot + P
V and strain parameter
δ under three different strain modes for the GaP phase. It is seen that the critical points to keep
equation (18) are at P = 1.41 Mbar for mode 2, P = 1.41 Mbar for mode 3 and a/a0 = 1.148
for mode 4, respectively. Equation (18) is no longer valid when P or a/a0 is higher than
these values and the lattice becomes structurally unstable. A similar result on elastic stability
analysis for the InP phase is presented in figure 4. The critical points for this phase are at
P = 0.75 Mbar for mode 2, P = 0.67 Mbar for mode 3 and a/a0 = 1.146 for mode 4,
respectively.

3.3. Pressure dependence of elastic-stiffness coefficients

The investigation of elastic stability of solids has been frequently approached by elastic-
stiffness coefficient calculation [3, 6, 7]. Wang et al [3, 6] proposed the following elastic-
stiffness criteria for elastic stability of cubic crystals,

B44 � 0

B11 − B12 � 0

B11 + 2B12 � 0,

(19)

or

B44 � 0

B ′ � 0

Bb � 0,

(20)

by taking equation (6) into consideration. The ab initio elastic-stiffness coefficients can be
conveniently calculated in the present study. It is worthwhile to compare the results of stability
analysis from different approaches for a more complete understanding of the problem.
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Figure 3. Theoretical relationship between 
Etot + P
V and strain parameter δ under strain mode
2 (a), mode 3 (b) and mode 4 (c), respectively, for GaP phase.

The pressure dependences of elastic-stiffness coefficients of ZB GaP, InP, BN and GaN are
calculated following the principles in section 2.3. Figures 5(a)–(d) show our first-principles
results on the variations of elastic-stiffness coefficients with pressure for these phases. It is
seen from the figure that B11, B12 and Bb monotonically increase with pressure, while B44 and
B ′ may increase or decrease for different phases. In GaP and InP, B44 decreases more rapidly
than B ′. These two coefficients always increase up to P = 8.06 Mbar for the BN phase. The
points where B44 becomes zero are determined at P = 1.41, 4.54 and 0.75 Mbar for GaP, GaN
and InP, respectively. Those points for B ′ are respectively at P = 1.41, 2.19 and 0.67 Mbar in
the same phase order. B ′ always decreases to zero before B44 under pressure in these phases.
B12 and Bb usually become higher under high pressure for GaP, GaN and InP. Meanwhile, B11

of BN has the largest value among all of its coefficients. This behaviour can be explained by
the fact that bond bending is extraordinarily difficult in BN due to its quite small Kleinman
internal strain parameter [24].

The stiffness coefficients vary with pressure P quite rapidly as cell volume increases.
For a better description of this behaviour, the variations of elastic-stiffness coefficients with
lattice dimension a/a0 are presented in figures 6(a)–(d). It is seen that B12 becomes lowest
in a wide range, indicating that these phases are weakest in resistance to in-plane shear under
volume dilatation. The a/a0 values at B12 = 0 are determined from figure 6 to be 1.081,
1.085, 1.088 and 1.062 for GaP, GaN, InP and BN, respectively. Bb becomes zero next to B12

at a/a0 = 1.148, 1.147, 1.146 and 1.153 in the same order. According to the stability criteria
of equation (20) the lattice becomes elastically unstable when the elastic-stiffness coefficients
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Figure 4. Theoretical relationship between 
Etot + P
V and strain parameter δ under strain mode
2 (a), mode 3 (b) and mode 4 (c), respectively, for InP phase.

B44, B ′ and Bb become zero. By comparing present results with those in section 3.2, it is
seen that these two ways of analysing elastic stability give the same results for the conditions
of structure stability for GaP and InP under hydrostatic pressure. Actually, since the elastic-
stiffness criteria in equation (19) are specifically deduced from the work–energy criterion of
equation (15) for cubic phases, they are strictly equivalent theoretically. Therefore, it should be
a natural matter for the above consistent results of elastic stability analyses. Besides, the present
work also demonstrates the efficiency and reliability of the two first-principles realizations in
the study of pressure-dependent structure stability.

3.4. Pressure dependences of internal elasticity and Kleinman internal strain parameter

Internal elasticity exists for crystals lacking inversion symmetry under structure deformation.
It is necessary to study the effect of internal elasticity on the elastic stability of crystals. Due to
the restriction in crystallographic symmetry, the internal strain has only one degree of freedom
for the phase with ZB structure. This variable measures the relative displacement between the
two sub-lattices in the ZB phase and is commonly presented by the Kleinman internal strain
parameter ζ [38]. Under [111] shear strain of mode 2, the elongation of the [111] bond is given
by (1 − ζ )δa

√
3/4. Our implementation for ab initio calculation of Kleinman parameter ζ

is available elsewhere [24]. The calculated ab initio ζ–a/a0 relationships for the four phases
are shown in figure 7. The pressure variation of ζ can be readily given through the EOS
equation of respective phases from the figure. It is seen from the comparison of our calculated
ζ data at P = 0 with previous publications in table 1 that the accordance is quite good. The ζ
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Figure 5. Relationship between elastic-stiffness coefficient and P for GaP (a), GaN (b), InP (c)
and BN (d), respectively.

Table 1. Kleinman internal strain parameters at P = 0.0 Mbar for GaP, GaN, InP and BN in ZB
structure.

Present calc. Other calc.

GaP 0.526 0.533 [40], 0.516 [24]a

GaN 0.482 0.5 [39], 0.477 [24]a

InP 0.615 0.652 [40], 0.59 [41], 0.615 [24]a

BN 0.130 0.11 [42], 0.1 [39],0.117 [24]a

a We used a coarse δ interval to calculate the ζ parameter in [24]. The present results are considered
more accurate.

parameter is considered to fall in the range between 0 and 1 under ambient conditions, where
ζ = 1 corresponds to the rigid bond connection among atoms, and ζ = 0 is for the case of a
sublattice subject to an affine transformation with the macroscopic strain. However, it is seen
by combination of figures 6 and 7 that the lattice can keep stable with ζ up to 1.149, 1.098,
1.127 and 1.066 respectively for GaP, GaN, InP and BN under high pressure. The present
results also show that ζ may gain negative values of −0.416, −1.136, −0.438 and −1.439
respectively for GaP, GaN, InP and BN before structure failure under volume dilatation.

The relationship between total and internal elastic coefficients for ZB phase is given
by [33, 43–46]

B44 = B0
44 − A2 E11 (21)
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Figure 6. Relationship between elastic-stiffness coefficient and a/a0 for GaP (a), GaN (b), InP (c)
and BN (d), respectively.
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where B0
44 is the elastic coefficient in the absence of internal displacement, A = −aζ/4. E11

is the only independent internal elastic coefficient of the ZB phase. We calculated the pressure
dependence of B0

44 by forbidding internal ion relaxation under mode 2 strain. As an example,
the B0

44–a/a0 curve of ZB InP is presented in figure 8. From the theoretical data of B44, B0
44 and

ζ , the internal elastic coefficient E11 can be conveniently calculated by equation (21). Figure 9
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presents the ab initio E11–a/a0 relationships of GaP, GaN, InP and BN phases. It is seen from
the figure that the internal elastic coefficient monotonically increases with pressure in general.
The BN phase shows the smallest ζ and largest E11, which indicates that the bond-bending is
the main factor in internal elasticity.

4. Discussion

There are several critical points of elastic instability for the phases studied here. It is essential
to know which one is the true failure point of the actual material. In the case of lattice dilatation,
B12 is always the first one to decrease to zero in these four III–V phases. This indicates that
these phases are quite weak against in-plane shear. However, the crystal does not necessarily
break down when this kind of shear in not present. In the following study the work–energy
criterion is used to explore when these phases become structurally unstable under pure volume
dilatation. In our calculation, the lattice parameter a is varied from a0 to 1.2a0 at an increment
of 0.001a0. Since the pressure is no longer constant under pure volume dilatation, the external
work done during the procedure is calculated by


W = −
∫ V ′

V
P(V ) dV (22)
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where V and V ′ are the initial and the dilated cell volumes, respectively. We calculate
the variation of internal energy increment 
E and the external work 
W after every four
increments. The integral in equation (22) is approximately calculated by the numerical integral
from these four sets of data. The theoretical curves of 
E −
W to a/a0 for GaP are presented
in figure 10. It is seen from the figure that equation (15) is violated when a/a0 > 1.148. This
critical point is just the same as the bulk modulus Bb becoming negative under lattice dilatation
for ZB GaP. Therefore, the vanishing of the bulk modulus is the fundamental reason for lattice
collapse under volume dilatation. The present conclusion is consistent with our previous results
on the spinodal instability [3, 6].

To explore the details of elastic stability under positive hydrostatic pressure further, we
investigate the pressure dependences of phonon bands of III–V phases in the ZB structure by
first-principles response-function calculation [47]. Our calculated results for the ZB phases of
GaN and BN are presented in figures 11(a) and (b), where the solid curves are the phonon bands
at P = 0 Mbar, the dotted curves are the phonon bands at P = 2.19 Mbar (a/a0 = 0.86) and
P = 8.06 Mbar (a/a0 = 0.80) for GaN and BN, respectively. It is seen from figure 11(a) that
some parts of the lowest transverse acoustic branches of the GaN phonon become negative at
P = 2.19 Mbar, indicating a softening of these phonons under pressure. We have shown in
section 3.3 that the elastic coefficient B ′ of GaN becomes zero at this pressure. Therefore, the
diminishing to zero of B ′ is considered as the main reason for phonon softening under pressure
in GaN phases. It also shows that elastic instability exists together with the phenomenon of
phonon softening in crystals. Since the elastic-stiffness coefficients always increase up to
P = 8.06 Mbar for the ZB BN phase, there is no phonon softening observed at this pressure
in figure 11(b). Recently, Prikhodko et al studied the pressure dependence of the elastic
parameters and the sound velocities of 3C-SiC. They established a connection between phonon
softening, sound velocity softening and phase transformation of the phase. Their results show
that the most obvious phonon softening is along the �–K direction and the Gruneisen parameter
of the lowest acoustic phonon at X is negative [48]. Our present results are in good agreement
with theirs.

Bb always increases under positive hydrostatic pressure. However, the reduction of B44

and B ′ reflects that the stability of these phases is most sensitive to shear strain at high pressure.
The reason can be properly understood as follows. The crystal lattice of the ZB phase is just like
a highly compressed spring system under pressure. The stronger the isotropic force applied, the
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Figure 11. The first-principles phonon bands. (a) GaN phase, (b) BN phase. The solid curves
are the phonon bands at P = 0 Mbar; the dotted curves are the phonon bands at P = 2.19 Mbar
(a/a0 = 0.86) and P = 8.06 Mbar (a/a0 = 0.80) for GaN and BN, respectively.

more elastic energy is stored in the system. The system remains stable under force balance at
a state of quite high internal energy. However, even a slight imbalance will cause rapid energy
release and configuration change. A small shear strain at critical points destroys the force
balance in the ZB phase and leads to phase transformation. From the above analysis, we see
that the pressure sustained by a perfect ZB phase can be rather high. However, local shear strain
can be established when lattice defects are present in the crystal. This kind of shear strain is the
origin of phase transformation in the ZB phase when its shear elastic coefficients become small
enough under pressure. Due to the wide variations in defect type and distribution in solids,
it is expected that the defect-induced phase transformation will not occur at a fixed point but
over a range of pressures. This probabilistic behaviour of phase transformation for solids
under high pressure has been verified by extensive experimental observations, for example in
high-pressure phase transformation experiments on ZnS [49–51], SiC [52, 53], InAs [54, 55],
GaAs [56, 57] etc. It is important to mention the influence of thermodynamic vibration at finite
temperature. Thermodynamic vibration enhances the force imbalance in solids and causes the
critical point of phase transformation to shift to a lower state of hydrostatic pressure [9].

There are three fundamental questions for the matter of pressure-induced phase
transformation. These are listed as when the phase transformation begins, how the structure
changes during the transition and what the new structure is. These questions are among the
main concerns in the theoretical study of phase transition in solids nowadays. We specifically
investigate the condition of elastic stability of ZB III–V phases under pressure in the present
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paper. The pressure-induced phase transition will be initiated as the structure loses elastic
stability in these semiconductors. Besides, several pioneering first-principles works have also
been done for the other two questions recently [58–61]. A comprehensive understanding of
pressure-induced phase transformation can be achieved upon the answers of these questions.

5. Conclusions

The stress–strain relationships and elastic stabilities of GaP, InP, BN and GaN under hydrostatic
pressure are investigated by first-principles calculations. Both work–energy and elastic-
stiffness criteria are used in the lattice stability analysis. The two methods give completely the
same result. Our study shows that the disappearance of the bulk modulus is the main reason
for the loss of lattice stability of a perfect ZB phase under volume dilatation. The diminishing
to zero of some elastic coefficients is considered as the main reason for phonon softening
and elastic instability under pressure. It is pointed out that the experimentally observed high-
pressure phase transformation is mainly due to lattice defects in the samples. The internal
shear strains arise from these lattice defects and cause structural instability when the shear
elastic-stiffness coefficients of the phase under high pressure become small. It is estimated
that a perfect ZB phase should sustain much higher pressure than what has been experimentally
reported thus far.

Acknowledgments

We are particularly grateful to Professor J Li and Dr X Lin for their help in using the Beowulf
PC clusters in the Department of Nuclear Engineering at Massachusetts Institute of Technology
and the Department of Materials Science and Engineering at Ohio State University. One of the
authors (SQW) would like to thank the China Scholarship Council for its support by a CSC
scholarship program (No 20491009). This work was partially supported by the Special Funds
for the Major State Basic Research Projects of China (No G2000067104) and the National
Natural Science Foundation of China (No 50472085).

References

[1] Born M and Huang K 1956 Dynamical Theory of Crystal Lattices (Oxford: Clarendon)
[2] Hill R 1975 Math. Proc. Camb. Phil. Soc. 77 225
[3] Wang J, Yip S, Phillpot S R and Wolf D 1993 Phys. Rev. Lett. 71 4182
[4] Morris J W and Krenn C R 2000 Phil. Mag. A 80 2827
[5] Hill R and Milstein F 1977 Phys. Rev. B 15 3087
[6] Wang J, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
[7] Yip S, Li J, Tang M J and Wang J H 2001 Mater. Sci. Eng. A 317 236
[8] Mizushima K, Tang M J and Yip S 1998 J. Alloys Compounds 279 70
[9] Mizushima K, Yip S and Kaxiras E 1994 Phys. Rev. B 50 14952

[10] Tang M and Yip S 1995 Phys. Rev. Lett. 75 2738
[11] Tang M and Yip S 1995 J. Appl. Phys. 76 2719
[12] Cleri F, Wang J and Yip S 1995 J. Appl. Phys. 77 1449
[13] Kocer C, Hirosaki N and Ogata S 2003 Phys. Rev. B 67 35210
[14] Sob M, Wang L G and Vitek V 1997 Mater. Sci. Eng. A 234 1075
[15] Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys. Rev. Lett. 82 2713
[16] Roundy D, Krenn C R, Cohen M L and Morris J W 2001 Phil. Mag. A 81 1725
[17] Ogata S, Hirosaki N, Kocer C and Kitagawa H 2001 Phys. Rev. B 64 172102
[18] Luo W, Roundy D, Cohen M L and Morris J W 2002 Phys. Rev. B 66 94110
[19] Clatterbuck D M, Chrzan D C and Morris J W 2002 Phil. Mag. Lett. 82 141

http://dx.doi.org/10.1103/PhysRevLett.71.4182
http://dx.doi.org/10.1080/014186100300012571
http://dx.doi.org/10.1103/PhysRevB.15.3087
http://dx.doi.org/10.1103/PhysRevB.52.12627
http://dx.doi.org/10.1016/S0921-5093(01)01162-5
http://dx.doi.org/10.1016/S0925-8388(98)00614-8
http://dx.doi.org/10.1103/PhysRevB.50.14952
http://dx.doi.org/10.1103/PhysRevLett.75.2738
http://dx.doi.org/10.1063/1.357575
http://dx.doi.org/10.1063/1.359577
http://dx.doi.org/10.1103/PhysRevB.67.035210
http://dx.doi.org/10.1016/S0921-5093(97)00329-8
http://dx.doi.org/10.1103/PhysRevLett.82.2713
http://dx.doi.org/10.1103/PhysRevB.64.172102
http://dx.doi.org/10.1103/PhysRevB.66.094110
http://dx.doi.org/10.1080/095008302317262642


Pressure dependence of stress–strain relationship 409

[20] Clatterbuck D M, Chrzan D C and Morris J W 2003 Acta Mater. 51 2271
[21] Wang S Q and Ye H Q 2002 J. Phys.: Condens. Matter 14 9579
[22] Wang S Q and Ye H Q 2005 J. Phys.: Condens. Matter 17 4475
[23] Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matter 15 5307
[24] Wang S Q and Ye H Q 2003 Phys. Status Solidi b 240 45
[25] Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matter 15 L197
[26] Phillips J C 1973 Bonds and Bands in Semiconductors (New York: Academic)
[27] Mooser E and Pearson W B 1959 Acta Crystallogr. A 12 1015
[28] Parthe E 1964 Crystal Chemistry of Tetrahedral Structures (New York: Gordon and Breach)
[29] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G,

Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
[30] Hartwigsen C, Goedecker S and Hutter J 1998 Phys. Rev. B 58 3641
[31] Steinle-Neumann G, Stixrude L and Cohen R E 1999 Phys. Rev. B 60 791
[32] Nielsen O H and Martin R M 1985 Phys. Rev. B 32 3780
[33] Nielsen O H and Martin R M 1985 Phys. Rev. B 32 3792
[34] Wallace D C 1972 Thermodynamics of Crystal (New York: Wiley)
[35] Polian A and Grimsditch M 1999 Phys. Rev. B 60 1468
[36] Birch F 1947 Phys. Rev. 71 809
[37] Vinet P, Ferrante J, Smith J R and Rose J H 1986 J. Phys. C: Solid State Phys. 19 L467
[38] Kleinman L 1962 Phys. Rev. 128 2614
[39] Kim K, Lambrecht W R L and Segall B 1996 Phys. Rev. B 53 16310
[40] de Gironcoli S, Baroni S and Resta R 1989 Phys. Rev. Lett. 62 2853
[41] Christensen N E, Satpathy S and Pawlowska Z 1987 Phys. Rev. B 36 1032
[42] Rodriguez-Hernandez P, Gonzalez-Diaz M and Munoz A 1995 Phys. Rev. B 51 14705
[43] Cousins C S G 1978 J. Phys. C: Solid State Phys. 11 4867
[44] Cousins C S G 1978 J. Phys. C: Solid State Phys. 11 4881
[45] Cousins C S G 1982 J. Phys. C: Solid State Phys. 15 1857
[46] Cousins C S G 2003 Phys. Rev. B 67 24107
[47] Baroni S, de Gironcoli S, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[48] Prikhodko M, Miao M S and Lambrecht W R L 2002 Phys. Rev. B 66 125201
[49] Samara G A and Drickamer H G 1962 J. Phys. Chem. Solids 23 457
[50] Desgreniers S, Beaulieu L and Lepage I 2000 Phys. Rev. B 61 8726
[51] Ves S, Schwarz U, Christensen N E, Syassen K and Cardona M 1990 Phys. Rev. B 42 9113
[52] Yoshida M, Onodera A, Ueno M, Takemura K and Shimomura O 1993 Phys. Rev. B 48 R10587
[53] Sekine T and Kobayashi T 1997 Phys. Rev. B 55 8034
[54] Minomura S and Drickamer H G 1962 J. Phys. Chem. Solids 23 451
[55] Pitt G D and Vyas M K R 1973 J. Phys. C: Solid State Phys. 6 274
[56] Besson J M, Itie J P, Polian A, Weill G, Mansot J L and Gonzalez J 1991 Phys. Rev. B 44 4214
[57] Weir S T, Vohra Y K, Vanderborgh C A and Ruoff A L 1989 Phys. Rev. B 39 1280
[58] Catti M 2001 Phys. Rev. Lett. 87 35504
[59] Miao M S and Lambrecht W R L 2003 Phys. Rev. B 68 92103
[60] Catti M 2002 Phys. Rev. B 65 224115
[61] Miao M S and Lambrecht W R L 2005 Phys. Rev. Lett. 94 225501

http://dx.doi.org/10.1016/S1359-6454(03)00033-8
http://dx.doi.org/10.1088/0953-8984/14/41/313
http://dx.doi.org/10.1088/0953-8984/17/28/007
http://dx.doi.org/10.1088/0953-8984/15/30/312
http://dx.doi.org/10.1002/pssb.200301861
http://dx.doi.org/10.1088/0953-8984/15/12/102
http://dx.doi.org/10.1107/S0365110X59002857
http://dx.doi.org/10.1016/S0927-0256(02)00325-7
http://dx.doi.org/10.1103/PhysRevB.58.3641
http://dx.doi.org/10.1103/PhysRevB.60.791
http://dx.doi.org/10.1103/PhysRevB.32.3780
http://dx.doi.org/10.1103/PhysRevB.32.3792
http://dx.doi.org/10.1103/PhysRevB.60.1468
http://dx.doi.org/10.1103/PhysRev.71.809
http://dx.doi.org/10.1088/0022-3719/19/20/001
http://dx.doi.org/10.1103/PhysRev.128.2614
http://dx.doi.org/10.1103/PhysRevB.53.16310
http://dx.doi.org/10.1103/PhysRevLett.62.2853
http://dx.doi.org/10.1103/PhysRevB.36.1032
http://dx.doi.org/10.1103/PhysRevB.51.14705
http://dx.doi.org/10.1088/0022-3719/11/24/017
http://dx.doi.org/10.1088/0022-3719/11/24/018
http://dx.doi.org/10.1088/0022-3719/15/9/009
http://dx.doi.org/10.1103/PhysRevB.67.024107
http://dx.doi.org/10.1103/RevModPhys.73.515
http://dx.doi.org/10.1103/PhysRevB.66.125201
http://dx.doi.org/10.1016/0022-3697(62)90086-0
http://dx.doi.org/10.1103/PhysRevB.61.8726
http://dx.doi.org/10.1103/PhysRevB.42.9113
http://dx.doi.org/10.1103/PhysRevB.48.10587
http://dx.doi.org/10.1103/PhysRevB.55.8034
http://dx.doi.org/10.1016/0022-3697(62)90085-9
http://dx.doi.org/10.1088/0022-3719/6/2/009
http://dx.doi.org/10.1103/PhysRevB.44.4214
http://dx.doi.org/10.1103/PhysRevB.39.1280
http://dx.doi.org/10.1103/PhysRevLett.87.035504
http://dx.doi.org/10.1103/PhysRevB.68.092103
http://dx.doi.org/10.1103/PhysRevB.65.224115
http://dx.doi.org/10.1103/PhysRevLett.94.225501

	1. Introduction
	2. Details of first-principles calculation
	2.1. Strain modes
	2.2. Stress calculation
	2.3. Stress--strain coefficients under pressure

	3. Results and analysis
	3.1. Analysis of the first-principles pressure--volume relation
	3.2. Elastic stability under pressure
	3.3. Pressure dependence of elastic-stiffness coefficients
	3.4. Pressure dependences of internal elasticity and Kleinman internal strain parameter

	4. Discussion
	5. Conclusions
	Acknowledgments
	References

